BIRZEIT UNIVERSITY

FACULTY OF INFORMATION TECHNLOGY

COMPUTER SYSTEMS ENGINEERING DEPARTMENT

DIGITAL ELECTRONICS AND COMPUTER ORGANIZATION LAB (ENCS 211)

Prelab-Experiment III

Encoders, Decoders, Multiplexers and Demultiplexers

Prepared for:
Ms. Bayan Nimer

Assistant:
Mus'ab B'airat

Student Name: Baibers Qasem
Student Number: 1082092
a) $Y=f(A, B, C)=A B^{\prime}+B^{\prime} C$

$$
\begin{aligned}
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}) & =\mathrm{AB} \\
& \left.=\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{C}^{\prime}\right)+\left(\mathrm{AB} \mathrm{~A}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}\right. \\
& =\sum(1,4,5)
\end{aligned}
$$

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{Y}
0	0	0	$\mathbf{0}$
0	0	1	$\mathbf{1}$
0	1	0	$\mathbf{0}$
0	1	1	$\mathbf{0}$
1	0	0	$\mathbf{1}$
1	0	1	$\mathbf{1}$
1	1	0	$\mathbf{0}$
1	1	1	$\mathbf{0}$

b) The input connections necessary to implement the function in part (a) is shown in figure (1).

Figure (1): 8-to-1 MUX.
c) Refer to function in (a) to fill the table below.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{Y}	\mathbf{Y}^{\prime}
0	0	0	0	$\mathbf{1}$
0	0	1	1	$\mathbf{0}$
0	1	0	0	$\mathbf{1}$
0	1	1	0	$\mathbf{1}$
1	0	0	1	$\mathbf{0}$
1	0	1	1	$\mathbf{0}$
1	1	0	0	$\mathbf{1}$
1	1	1	0	$\mathbf{1}$

3-

a) Convert the following expression into summation form:
$Y=A^{\prime} B C+B C^{\prime}$
$\mathrm{Y}=\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{BC}^{\prime}=\mathrm{A}^{\prime} \mathrm{BC}+\left(\mathrm{A}+\mathrm{A}^{\prime}\right) \mathrm{BC}^{\prime}$
$\mathrm{Y}=\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{ABC}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$
$Y=\sum(2,3,6)$
b) The demultiplexer output is selected, and will go low, by the address of inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ when the IC is enabled .therefore, we can create the output function Y by summing together the outputs indicated by the summation form above. Since the outputs of the demultiplexers are active-low, this is done with a NAND gate. Connect each of the true minterms output of the demultiplexer to an input of the NAND gate, connect all unused NAND inputs to logic 1.

Figure (2): 3-to-8 DeMUX.

